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Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation
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A detailed study is presented for a large class of uncoupled continuous-time random walks. The master
equation is solved for the Mittag-Leffler survival probability. The properly scaled diffusive limit of the master
equation is taken and its relation with the fractional diffusion equation is discussed. Finally, some common
objections found in the literature are thoroughly reviewed.
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I. INTRODUCTION

The idea of combining a stochastic process for wait
times between two consecutive events and another stoch
process which associates a reward or a claim to each e
dates back at least to the first half of the 20th century@1,2#.
The Crame´r-Lundberg model for insurance risk is based on
point ~or renewal! process@3,4# ruling the random times a
which random claims have to be paid by the company du
the occurrence of accidents. Similar concepts have been
in renewal theory and in queueing theory as well@3–8#.

In the 1960s, Montroll and Weiss published a celebra
series of papers on random walks, where they applied
ideas developed by mathematicians working on probab
theory to the physics of diffusion processes on lattices
particular, they wrote a paper on continuous-time rand
walks ~CTRWs! @9#, in which the waiting-time between two
consecutive jumps of a diffusing particle is a real posit
stochastic variable.

The paper of Montroll and Weiss on CTRWs was t
starting point for several developments on the phys
theory of diffusion. In more recent times, CTRWs were a
plied back to economics and finance by Rudolf Hilfer@10#,
by the authors of the present paper@11–14# and, later, by
Weiss and co-workers@15,16# and by Kutner and S´witała
@17,18#. However, here, the focus will be on anomalous
laxation properties of the waiting-time probability dens
and on the consequent relation between CTRWs and f
tional diffusion.

Anomalous relaxation with power-law tails of th
waiting-time density was investigated by means of Mo
Carlo simulation by Montroll and Scher@19#. Shlesinger, Tu-
naley, and other authors studied the asymptotic behavio
CTRWs for large times@20–24# ~see also Ref.@25#!. Hilfer
has recognized the important role played by Mittag-Leffl
type functions in anomalous relaxation@26,27#. Interesting
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contributions about the theory of CTRWs, including th
problem of anomalous relaxation, can be found in Refs.@28–
41#. The recent book by ben-Avraham and Havlin discus
in depth the possible applications of the formalism dev
oped in the aforementioned papers@42#.

The asymptotic relation between properly scaled CTR
with power-law waiting times and fractional diffusion pro
cesses has already been rigorously studied by Balakrish
in 1985, dealing with anomalous diffusion in one dimensi
@43#, four years before the publication of the fundamen
paper by Schneider and Wyss on the analytic theory of fr
tional diffusion and wave equations@44#. Later, many au-
thors discussed this relation@45–53#. As written above, the
correspondence between CTRWs with Mittag-Leffler waiti
time and the time-fractional diffusion equation has been
cidly worked out and explained in Ref.@48# by Hilfer and
Anton, who have shed light on the relevance of the Mitta
Leffler function, their specific aims, methods, and interpre
tions being completely different from those of Balakrishna
However, it must be recognized that already Balakrishnan
his formula ~27! has found, as the natural choice for th
waiting-time in CTRWs approximating fractional diffusion
the waiting time density whose Laplace transform is~in the
notation used in this paper! 1/(11csb), wherec is a positive
constant. Implicitly, this is the Mittag-Leffler waiting-time
described in Sec. III below. Meerschaertet al. have devel-
oped a method to derive the equations for CTRWs in
diffusive limit @52#. In their paper, they discuss both th
coupled and uncoupled case.

The present paper is devoted to a detailed discussio
the uncoupled case and it is organized as follows. In Sec
the basic quantities are introduced and a summary of
theory is given. Sec. III is devoted to the solution of t
master equation in the uncoupled case. General formulas
presented and specialized to the case of the Mittag-Le
waiting-time survival probability, in which an exact solutio
is available in terms of a fractionally generalized compoun
Poisson process. In this section, a fractional relaxation eq
tion satisfied by the Mittag-Leffler function is discussed.
Sec. IV, the proper scaling leading to the fractional diffusi
©2004 The American Physical Society07-1
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equation is presented. The main result of this section is
the solution of the CTRW master equation weakly conver
to the solution of a Cauchy problem for the fractional diff
sion equation. This result is a version of the central lim
theorem and the steps for a rigorous proof are sketched
nally, in Sec. V, the reader can find a discussion of so
objections which are usually raised when dealing with fr
tional diffusion. Unnecessary mathematical difficulties ha
been avoided throughout the paper.

II. BASIC DEFINITIONS

As mentioned in the Introduction, CTRWs are essentia
point processes with reward. The point process is chara
ized by a sequence of independent identically distribu
~i.i.d.! positive random variablest i , which can be inter-
preted as waiting times between two consecutive events

tn5t01(
i 51

n

t i , tn2tn215tn , n51,2,3, . . . , t050.

~1!

The rewards are i.i.d. not necessarily positive random v
ablesj i . In the usual physical interpretation, thej is repre-
sent the jumps of a diffusing particle~the walker!, and they
can ben-dimensional vectors. In this paper, only the on
dimensional case is studied, but the extension of many
sults to then-dimensional case is straightforward. The po
tion x of the walker at timet is @with N(t)5max$n:tn<t% and
x(0)50]:

x~ t !5(
i 51

N(t)

j i . ~2!

CTRWs are rather good and general phenomenological m
els for diffusion, including anomalous diffusion, provide
that the time of residence of the walker is much greater t
the time it takes to make a jump. In fact, in the formalis
jumps are instantaneous.

In general, the jumps and the waiting times are not in
pendent from each other. Then, the random walk can be
scribed by the joint probability densityw~j,t! of jumps and
waiting times;w(j,t)djdt is the probability of a jump to be
in the interval (j,j1dj) and of a waiting time to be in the
interval (t,t1dt). The following integral equation give
the probability densityp(x,t) for the walker being in posi-
tion x at timet, conditioned by the fact that it was in positio
x50 at timet50:

p~x,t !5d~x!C~ t !

1E
0

tE
2`

1`

w~x2x8,t2t8!p~x8,t8!dt8dx8, ~3!

whereC~t! is the so-called survival function.C~t! is related
to the marginal waiting-time probability densityc~t!. The
two marginal densitiesc~t! andl~j! are
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c~t!5E
2`

1`

w~j,t!dj,

l~j!5E
0

`

w~j,t!dt, ~4!

and the survival functionC~t! is

C~t!512E
0

t

c~t8!dt85E
t

`

c~t8!dt8. ~5!

The integral equation, Eq.~3!, can be solved in the
Laplace-Fourier domain. The Laplace transformg̃(s) of a
~generalized! function g(t) is defined as

g̃~s!5E
0

1`

dt e2stg~ t !, ~6!

whereas the Fourier transform of a~generalized! function
f (x) is defined as

f̂ ~k!5E
2`

1`

dx eikxf ~x!. ~7!

A generalized function is a distribution~like Dirac’s d! in the
sense of Sobolev and Schwartz@54#.

One gets

p̃̂~k,s!5C̃~s!
1

12 w̃̂~k,s!
, ~8!

or, in terms of the densityc~t!,

p̃̂~k,s!5
12c̃~s!

s

1

12 w̃̂~k,s!
, ~9!

as, from Eq.~5!, one has

C~s!5
12c̃~s!

s
. ~10!

In order to obtainp(x,t), it is then necessary to invert it

Laplace-Fourier transformp̃̂(k,s). Analytic solutions are
quite important, as they provide a benchmark for testing
merical inversion methods. In the following section, an e
plicit analytic solution for a class of continuous-time rando
walks with anomalous relaxation behavior will be present
It will be necessary to restrict oneself to the uncoupled ca
in which jumps and waiting times are not correlated.

III. SOLUTION OF THE MASTER EQUATION

In this section, the solution of Eq.~3! will be discussed in
the uncoupled case. First of all, a general formula will
derived forp(x,t), then it will be specialized to two cases
the well-known case of an exponential survival function a
the case where the survival function is a Mittag-Leffler fun
7-2
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tion. The connections and the analogies between these
cases will be presented. A new solution will be obtained
terms of a fractionally generalized compound-Poisson p
cess.

As anticipated above, the study will be restricted to u
coupled continuous-time random walks. This means t
jump sizes do not depend on waiting times and the jo
probability density for jumps and waiting times can be fa
torized in terms of the two marginal densities,

w~j,t!5l~j!c~t! ~11!

with the normalization conditions *djl(j)51 and
*dtc(t)51.
n

m
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In this case the integral master equation forp(x,t) be-
comes

p~x,t !5d~x!C~ t !1E
0

t

c~ t2t8!

3F E
2`

1`

l~x2x8!p~x8,t8!dx8Gdt8. ~12!

This equation has a well-known general explicit solution
terms ofP(n,t), the probability ofn jumps occurring up to
time t, and of then-fold convolution of the jump density
ln(x):
ln~x!5E
2`

1`E
2`

1`

. . . E
2`

1`

djn21djn22•••dj1l~x2jn21!l~jn212jn22!•••l~j1!. ~13!

Indeed,P(n,t) is given by

P~n,t !5E
0

t

cn~ t2t!C~t!dt, ~14!

wherecn(t) is then-fold convolution of the waiting-time density:

cn~t!5E
0

tE
0

tn21
. . . E

0

t1
dtn21dtn22•••dt1c~ t2tn21!c~tn212tn22!•••c~t1!. ~15!
he
g

i-
The n-fold convolutions defined above are probability de
sity functions for the sum ofn variables.

The Laplace transform ofP(n,t), P̃(n,s), reads

P̃~n,s!5@c̃~s!#nC̃~s!. ~16!

By taking the Fourier-Laplace transform of Eq.~12!, one
gets

p̃̂~k,s!5C̃~s!
1

12c̃~s!l̂~k!
. ~17!

But, recalling thatul~k!u,1 and uc(s)u,1, if kÞ0 and s
Þ0, Eq. ~17! becomes

p̃̂~k,s!5C̃~s! (
n50

`

@c̃~s!l̂~k!#n; ~18!

this gives, inverting the Fourier and the Laplace transfor
and taking into account Eqs.~13! and ~14!,

p~x,t !5 (
n50

`

P~n,t !ln~x!. ~19!

Equation~19! can also be used as the starting point to der
Eq. ~12! via the transforms of Fourier and Laplace, as
describes a jump process subordinated to a renewal pro
-

s

e
t
ss.

A remarkable analytic solution is available when t
waiting-time probability density function has the followin
exponential form:

c~t!5me2mt. ~20!

Then, the survival probability isC(t)5e2mt and the prob-
ability of n jumps occurring up to timet is given by the
Poisson distribution

P~n,t !5
~mt !n

n!
e2mt. ~21!

In this case, Eq.~19! becomes

p~x,t !5 (
n50

`
~mt !n

n!
e2mtln~x!. ~22!

When l(x) is the jump density for a positive random var
able, Eq.~22! is the starting point of the Crame´r-Lundberg
model for insurance risk@1,2#. It is worth noting that the
survival probabilityC~t! satisfies the following relaxation
ordinary differential equation:

d

dt
C~t!52mC~t!, t.0; C~01!51. ~23!
7-3
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The simplest fractional generalization of Eq.~23! giving
rise to anomalous relaxation and power-law tails in
waiting-time probability density can be written as follow
by appropriately choosing the time scale:

db

dtb
C~t!52C~t!, t.0, 0,b<1; C~01!51,

~24!

where the operatordb/dtb is the Caputo fractional deriva
tive, related to the Riemann-Liouville fractional derivativ
For a sufficiently well-behaved functionf (t), the Caputo
derivative is defined, for 0,b,1, by the equation

db

dtb
f ~ t !5

1

G~12b!

d

dtE0

t f ~t!

~ t2t!b
dt2

t2b

G~12b!
f ~01!,

~25!

and reduces to the ordinary first derivative forb51. The
Laplace transform of the Caputo derivative of a functionf (t)
is

LS db

dtb
f ~ t !;sD 5sb f̃ ~s!2sb21f ~01!. ~26!

If Eq. ~26! is applied to the Cauchy problem of Eq.~24!, one
gets

C̃~s!5
sb21

11sb
. ~27!

Equation~27! can be inverted, giving the solution of Eq.~24!
in terms of the Mittag-Leffler function of parameterb
@55,56#,

C~t!5Eb~2tb!, ~28!

defined by the following power series in the complex pla

Eb~z!ª(
n50

`
zn

G~bn11!
. ~29!

For small t, the Mittag-Leffler survival function has th
same behavior as a stretched exponential,

C~t!5Eb~2tb!.12
tb

G~b11!
.exp$2tb/G~b11!%,

0<t!1, ~30!

whereas for larget, it has the asymptotic representation

C~t!;
sin~bp!

p

G~b!

tb
, 0,b,1, t→`. ~31!

Accordingly, for smallt, the probability density function o
waiting timesc(t)52dC(t)/dt behaves as
01110
e

:

c~t!52
d

dt
Eb~2tb!.

t2(12b)

G~b11!
exp$2tb/G~b11!%,

0<t!1, ~32!

and the asymptotic representation is

c~t!;
sin~bp!

p

G~b11!

tb11
, 0,b,1, t→`. ~33!

Before going on, it is now time to review the results obtain
so far. The solution of Eq.~24! is a survival probability func-
tion C~t! with power-law decayt2b if 0,b,1 andt→`.
The decay exponent of the corresponding probability den
function c~t! is 2~b11!, with values in the interval~1,2!.
This ensures that the normalization condition forc~t! can be
satisfied. However, already the first moment ofc~t! is infi-
nite. It is worth stressing that the caseb51 does not corre-
spond to at21 decay of the survival probability, but to th
exponential relaxation described by Eq.~23!.

The Laplace transform ofc~t! is given by@see Eq.~10!#

c̃~s!512sC̃~s!5
1

11sb
. ~34!

Therefore, recalling Eqs.~16! and ~27!, one can obtain the
Laplace transform ofP(n,t):

P̃~n,s!5
1

~11sb!n

sb21

11sb
. ~35!

This can be analytically inverted as†see Eq.~1.80! in Ref.
@57#‡

L„tbnEb
(n)~2tb!;s…5

n!sb21

~11sb!n11
, ~36!

where

Eb
(n)~z!ª

dn

dzn
Eb~z!.

Equation ~36! yields an explicit analytic expression fo
P(n,t):

P~n,t !5
tbn

n!
Eb

(n)~2tb!. ~37!

Equation~37! generalizes the Poisson distribution~21! for
the anomalous relaxation case under study~0,b,1!. It re-
duces to the Poisson distribution in the caseb51, in which
the Mittag-Leffler function coincides with the exponenti
function. As an immediate consequence of this result and
Eq. ~19!, one also gets the analytic solution of the mas
equation~12! for a continuous-time random walk characte
ized by the survival function of Eq.~28!:
7-4
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UNCOUPLED CONTINUOUS-TIME RANDOM WALKS: . . . PHYSICAL REVIEW E 69, 011107 ~2004!
p~x,t !5 (
n50

`
tbn

n!
Eb

(n)~2tb!ln~x!. ~38!

As a consistency check, one can show that

E
2`

1`

p~x,t !dx51, ; t. ~39!

This is equivalent to the requirement that the Fourier tra
form computed ink50 satisfiesp̂(0,t)51, ;t. But p̂(0,t) is
given by

p̂~0,t !5 (
n50

`
tbn

n!
Eb

(n)~2tb! ~40!

and recalling that for any sufficiently well-behaved functi
f,

f ~a1d!5 (
n50

`
f (n)~a!

n!
dn,

identifying a52tb and d51tb, one has the following
chain of equalities:

p̂~0,t !5 (
n50

`
tbn

n!
Eb

(n)~2tb!5Eb„~2tb!1tb
…5Eb~0!51.

~41!

It is now interesting to investigate the behavior of the ex
solution given by Eq.~38! in the so-called diffusive or hy-
drodynamic limit. This limit is obtained by making smalle
all waiting times by a positive factorr, and all jumps by a
positive factorh and then lettingr andh vanish in an appro-
priate way. This will be the subject of the following sectio

IV. THE DIFFUSIVE LIMIT

In this section, for the first time, a collection of results
the authors of this paper is made available in a comp
way; mathematical subtleties have been recalled wher
necessary. Partial results were discussed in Refs.@13,53,58#.
Here, the focus is on the well-scaled transition to the dif
sive limit based on sound limit theorems of probabil
theory. The following derivation should help the reader
judging whether, in the problem he/she is dealing with,
connection between CTRWs and fractional diffusion is r
evant.

As mentioned above, in order to discuss the diffus
limit, the waiting times are multiplied by a positive factorr
so that one gets

tn~r !5r t11r t21•••1r tn . ~42!

Analogously, the jumps are multiplied by a positive factorh.
Letting x0(h)50, one has

xn~h!5hj11hj21•••1hjn . ~43!

The probability density functionc r(t) of the scaled waiting
times is related toc(t) in the following way:
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c r~t!5
c~t/r !

r
, t.0, ~44!

The scaled-jump probability density functionlh(j) is given
by

lh~j!5
l~j/h!

h
. ~45!

The Laplace transform ofc r(t) and the Fourier transform o
lh(j) are, respectively,

c̃ r~s!5c̃~rs!, l̂h~k!5l̂~hk!. ~46!

In the Fourier-Laplace domain, the rescaled solution of
master equation reads

p̃̂r ,h~k,s!5
12c̃ r~s!

s

1

12c̃ r~s!l̂h~k!
. ~47!

Equation~47! will be the starting point for investigating th
diffusive limit of the solution presented in Eq.~38!. The
results discussed above, from Eq.~42! to Eq.~47!, are rather
general. It is now possible to specialize them to the class
waiting-time densities discussed in Sec. III and to a la
class of jump densities.

For 0,b,1, Eq.~33! gives the asymptotic representatio
of the waiting-time density. For such a behavior, one has,
each fixeds.0, that

c̃ r~s!5c̃~rs!512c1~rs!b1o~r b!, r→0. ~48!

In the case under study, it turns out thatc151. Remarkably,
this result holds also forb51. An important class of sym-
metric jump densities@l(2j)5l(j)# is characterized by
the following behavior, forb.0 and some parametera
P(0,2):

l~x!5@b1e~ uxu!#uxu2(a11), ~49!

with e(uxu)→0 asuxu→`. For these densities, exhibiting
power-law decay at infinity, the asymptotic relation holds

l̂h~k!5l̂~hk!512c2~huku!a1o~ha!, h→0, ~50!

where the constantc2 is given by

c25
bp

G~a11!sin~ap/2!
. ~51!

Equation~50! is valid also for symmetric densities with finit
second moments. In that case, one hasa52 and c2
5s2/2. Both the results in Eq.~48! and in Eq.~50! are less
trivial than they seem. Indeed, in order to prove Eq.~48!, it is
necessary to use a corollary on Laplace transforms discu
in the classical book by Widder~see Ref.@59#, p. 182!,
7-5
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whereas the proof of Eq.~50! is tedious but can be distilled
from Chap. 8 of Ref.@60#. A simpler but weaker proof can b
found in Ref.@58#.

By using the asymptotics in Eqs.~48! and~50! and replac-
ing in Eq. ~47!, it follows that

p̃̂r ,h~k,s!;
c1r bsb21

c1r bsb1c2haukua
, r ,h→0. ~52!

Now, the scaling relation can be imposed,

c1r b5c2ha, ~53!

yielding, for r ,h→0,

p̃̂r ,h~k,s!→ sb21

sb1ukua
. ~54!

This limit coincides with the Laplace-Fourier transform
the Green function~or fundamental solution! for the follow-
ing fractional diffusion Cauchy problem:

]b

]tb
u~x,t !5

]a

]uxua
u~x,t !, 0,a<2, 0,b<1,

u~x,01!5d~x!, xP~2`,1`!, t.0, ~55!

where ]b/]tb is the Caputo derivative defined in Eq.~25!
and]a/]uxua is the Riesz derivative, a pseudodifferential o
erator with symbol2ukua. Recalling Eq.~26!, the Laplace-
Fourier transform ofu(x,t) reads

ũ̂~k,s!5
sb21

sb1ukua
, ~56!

and therefore, as anticipated, one has, forr ,h→0 under the
scaling relation Eq.~53!,

p̃̂r ,h~k,s!→ ũ̂~k,s!. ~57!

In this passage to the limit,p̃̂r ,h(k,s) andũ̂(k,s) are asymp-
totically equivalent in the Laplace-Fourier domain. Then,
asymptotic equivalence in the space-time domain betw
the master equation~12! and the fractional diffusion equatio
~55! is ensured by the continuity theorem for sequences
characteristic functions, after the application of the ana
gous theorem for sequences of Laplace transforms@7#.
Therefore, there is convergence in law or weak converge
for the corresponding probability distributions and densiti
Here, weak convergence means that the Laplace trans
and/or Fourier transform~characteristic function! of the
probability density function are pointwise convergent~see
for details Ref.@7#!. In other words, under the appropria
scaling, defined by Eq.~53!, and in the limit r ,h→0, the
solution given in Eq.~38! weakly converges to the Gree
function of the fractional diffusion equation~55!,
01110
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u~x,t !5
1

tb/a
Wa,bS x

tb/aD , ~58!

whereWa,b(u) is given by

Wa,b~u!5
1

2pE2`

1`

dke2 ikuEb~2ukua!, ~59!

the inverse Fourier transform of a Mittag-Leffler functio
@35,53,61,62#. In the caseb51 anda52, the fractional dif-
fusion equation reduces to the ordinary diffusion equat
and the functionW2,1(u) becomes the Gaussian probabili
density function evolving in time with a variances252t. In
the general case~0,b,1 and 0,a,2!, the function
Wa,b(u) is still a probability density evolving in time, and i
belongs to the class of FoxH-type functions that can be
expressed in terms of a Mellin-Barnes integral as shown
details in Ref.@61#.

The scaling equation,~53! can be written in the following
form, whereC is a constant:

h5Crb/a. ~60!

If b51 and a52, one recognizes the scaling typical
Brownian motion~or the Wiener process!. Indeed, this is the
limiting stochastic process for the uncoupled continuo
time random walks with exponential waiting-time dens
and the class of jump densities with finite second moment
all the other cases considered in this paper,bP~0,1! and
aP~0,2!, the limiting process has a probability density fun
tion given byu(x,t) in Eq. ~58!.

V. DISCUSSION AND CONCLUSIONS

In this paper, the connection between a class of CTR
with Mittag-Leffler survival probability and the fractiona
diffusion equation has been discussed. In Sec. III, an exp
solution of the master equation has been derived for long
processes with Mittag-Leffler survival function. As shown
Sec. IV, it turns out that, for this class, the solution of t
CTRW master equation weakly converges to the solution o
Cauchy problem for the fractional diffusion equation. A
though such weak convergence also occurs for the wait
time densities whose Laplace transforms have ans→0 as-
ymptotics 12c1sb1o(sb) ~see Refs.@43,58#!, the Mittag-
Leffler waiting-time law deserves special attention a
without passage to the diffusion limit, it leads to a tim
fractional master equation, just by insertion into the CTR
integral equation. This fact was discovered and made exp
for the first time by Hilfer and Anton@48#. Therefore, this
special type of waiting-time law~with its particular proper-
ties of being singular at zero, completely monotonic, a
long tailed! may be best suited for approximate CTRW sim
lation of fractional diffusion. It must be stressed that both t
results of Secs. III and IV are based on sound and orig
mathematical considerations.

It is important to remark that the presence of the tim
Caputo fractional derivative~or equivalently of the Riemann
Liouville derivative! and of the space Riesz derivative in E
7-6
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~55! is a natural consequence of the well-scaled diffusio
limit discussed in Sec. IV. This should be already clear fr
previous work on the relation between CTRWs and fr
tional diffusion ~see, in particular Ref.@48#!. However, it is
still often argued that there is an arbitrariness in the choic
the fractional operator in Eq.~55!. If one uses different frac-
tional operators, the physical meaning, if any, of these v
sions of Eq.~55! will be different.

Another point has been raised on the physical meanin
Eq. ~55!. In particular, some authors consider the space fr
tional derivative unphysical due to its nonlocality. An answ
to this objection is that it is always possible to use an eq
tion as a phenomenological model if it gives good results
the description of a physical phenomenon. For instance,
usual Fourier diffusion equation is not invariant for time i
version, whereas the basic equations of classical mecha
are. Still, the Fourier equation gives very useful results wh
used in many applications.

Finally, it is important to discuss some recent results
Hilfer @63,64#. He has shown that not every continuous-tim
random walk with a long time tail is asymptotically equiv
lent to a diffusion equation with a fractional time derivativ
In Ref. @63#, he considers different ways to define fraction
derivatives in time. He shows that only the Caputo type le
to mass-conserving fractional diffusion. In Ref.@64#, an ex-
ample of a CTRW has been given whose waiting-time d
sity has a power-law behavior but whose diffusive limit
not the time-fractional diffusion equation. This latter cou
f
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terexample seems to be in contrast with what has been
in Sec. IV above. However, the paradox disappears if o
takes into account the proper scaling given by Eqs.~44!–
~46!. Indeed, the counterexample by Hilfer does not sati
this scaling. More precisely, the nonrelevance of this co
terexample for the theory developed in Sec. IV can be sta
as follows. The waiting-time density of the second mod
presented by Hilfer cannot be written in the form of Eq.~44!:
c r(t)5c(t/r )/r . Essentially, each of the two addends
Hilfer’s density has a different scaling form. The scaling
Eq. ~44! has already been used by the present authors in
@58#. It was previously used by Feller in deriving the diffu
sion equation from the simple symmetric random walk@65#,
by Balakrishnan@43# and, in recent times, independent
from the authors of this paper, by Uchaikin and Saenko@66#.

We are currently working to extend our approach to t
coupled case, but this will be the subject of future paper
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